WESTCODE

Data Sheet Issue:- 1

Phase Control Thyristor Types N1802NS120 to N1802NS160

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V _{DRM}	Repetitive peak off-state voltage, (note 1)	1200-1600	V
V _{DSM}	Non-repetitive peak off-state voltage, (note 1)	1200-1600	V
V _{RRM}	Repetitive peak reverse voltage, (note 1)	1200-1600	V
V _{RSM}	Non-repetitive peak reverse voltage, (note 1)	1300-1700	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{T(AV)}	Mean on-state current, T _{sink} =55°C, (note 2)	1802	А
I _{T(AV)}	Mean on-state current. T _{sink} =85°C, (note 2)	1216	А
I _{T(AV)}	Mean on-state current. T _{sink} =85°C, (note 3)	718	А
I _{T(RMS)}	Nominal RMS on-state current. T _{sink} =25°C, (note 2)	3592	А
I _{T(d.c.)}	D.C. on-state current. T _{sink} = 25°C, (note 4)	3033	А
I _{TSM}	Peak non-repetitive surge $t_p=10ms$, $V_{RM}=0.6V_{RRM}$, (note 5)	29.6	kA
ITSM2	Peak non-repetitive surge $t_p=10ms$, $V_{RM}\leq 10V$, (note 5)	32.5	kA
l ² t	$I^{2}t$ capacity for fusing t _p =10ms, V _{RM} =0.6V _{RRM} , (note 5)	4.38×10 ⁶	A ² s
l ² t	$I^{2}t$ capacity for fusing t _p =10ms, V _{RM} ≤10V, (note 5)	5.28×10 ⁶	A ² s
al: /al#	Maximum rate of rise of on-state current (repetitive), (Note 6)	500	A/µs
di⊤/dt	Maximum rate of rise of on-state current (non-repetitive), (Note 6)	1000	A/µs
V _{RGM}	Peak reverse gate voltage	5	V
P _{G(AV)}	Mean forward gate power	4	W
P _{GM}	Peak forward gate power	30	W
V_{GD}	Non-trigger gate voltage, (Note 7)	0.25	V
T _{HS}	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes:-

- 1) De-rating factor of 0.13% per °C is applicable for T_j below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Single side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, 125°C T_j initial.
- 6) V_D=67% V_DRM, I_TM=1500A, I_FG=2A, t_r \le 0.5 \mu s, T_{case} = 125 ^{\circ}C.
- 7) Rated V_{DRM}.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
V _{TM}	Maximum peak on-state voltage	-	-	1.29	I _{TM} =2550A	V
V ₀	Threshold voltage	-	-	0.855		V
rs	Slope resistance	-	-	0.171		mΩ
dv/dt	Critical rate of rise of off-state voltage	1000	-	-	V _D =80% V _{DRM}	V/µs
I _{DRM}	Peak off-state current	-	-	100	Rated V _{DRM}	mA
I _{RRM}	Peak reverse current	-	-	100	Rated V _{RRM}	mA
V _{GT}	Gate trigger voltage	-	-	3.0	T _j =25°C	V
I _{GT}	Gate trigger current	-	-	300	T _j =25°C. V _D =10V, I _T =2A	mA
Ін	Holding current	-	-	1000	Tj=25°C	mA
D.	Thermal resistance, junction to	-	-	0.024	Double side cooled	K/W
R_{θ}	heatsink	-	-	0.048	Single side cooled	K/W
F	Mounting force	19	-	26		kN
Wt	Weight	-	510	-		g

Notes:-

1) Unless otherwise indicated $T_j=125^{\circ}C$.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade 'H'	V _{DRM} V _{DSM} V _{RRM} V	V _{RSM} V	V _D V _R DC V
12	1200	1300	810
14	1400	1500	930
16	1600	1700	1040

2.0 Extension of Voltage Grades

This report is applicable to other and higher voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_i below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

Where $V_0=0.855V$, $r_s=0.171m\Omega$,

 R_{th} = Supplementary thermal impedance, see table below.

ff = Form factor, see table below.

Supplementary Thermal Impedance								
Conduction Angle 30° 60° 90° 120° 180° 270° d.c.							d.c.	
Square wave Double Side Cooled	0.0293	0.0285	0.0278	0.0271	0.0261	0.0249	0.024	
Square wave Single Side Cooled	0.0534	0.053	0.0524	0.0518	0.0509	0.0497	0.0489	
Sine wave Double Side Cooled	0.0286	0.0276	0.0269	0.0263	0.0248			
Sine wave Single Side Cooled 0.0531 0.0523 0.0517 0.0511 0.0497								

Form Factors								
Conduction Angle 30° 60° 90° 120° 180° 270° d.							d.c.	
Square wave	3.46	2.45	2	1.73	1.41	1.15	1	
Sine wave	3.98	2.78	2.22	1.88	1.57			

5.2 Calculating V_T using ABCD Coefficients

The on-state characteristic I_T vs. V_T , on page 7 is represented in two ways;

- (i) the well established V_o and r_s tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below:

$$V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.

	25°C Coefficients		125°C Coefficients
Α	1.277644	A 0.09295321	
В	-0.07688047	B 0.1662563	
С	7.812717×10 ⁻⁵	С	2.500423×10 ⁻⁴
D	8.063372×10 ⁻³	D	-0.01490867

5.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}} \right)$$

Where p = 1 to *n*, *n* is the number of terms in the series and:

- t = Duration of heating pulse in seconds.
- r_{t} = Thermal resistance at time t.
- r_p = Amplitude of p_{th} term.
- τ_p = Time Constant of r_{th} term.

D.C. Double Side Cooled								
Term	Term 1 2 3 4 5							
r _p	0.01249139	6.316833×10 ⁻³	1.850855×10 ⁻³	1.922045×10 ⁻³	6.135330×10 ⁻⁴			
$ au_{ ho}$	0.8840810	0.1215195	0.03400152	6.742908×10 ⁻³	1.326292×10 ⁻³			

	D.C. Single Side Cooled								
Term	Term 1 2 3 4 5 6								
r _p	0.02919832	4.863568×10 ⁻³	3.744798×10 ⁻³	6.818034×10 ⁻³	2.183558×10 ⁻³	1.848294×10 ⁻³			
$ au_{ ho}$	6.298105	3.286174	0.5359179	0.1186897	0.02404574	3.379476×10 ⁻³			

<u>Curves</u>

Figure 1 - On-state current vs. Power dissipation - Double Side Cooled (Sine wave)

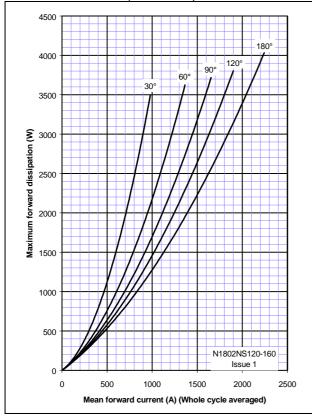


Figure 3 - On-state current vs. Power dissipation - Double Side Cooled (Square wave)

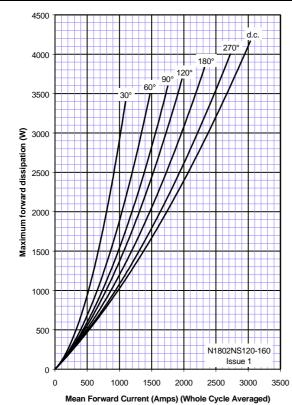


Figure 2 - On-state current vs. Heatsink temperature - Double Side Cooled (Sine wave)

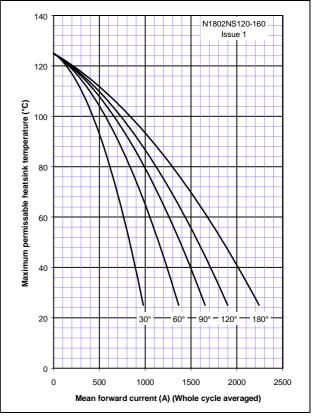
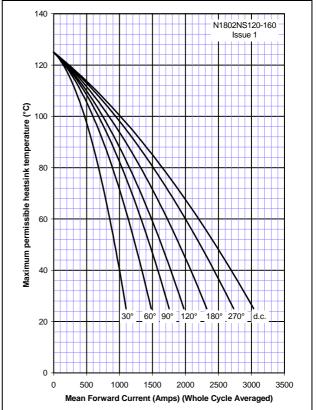



Figure 4 - On-state current vs. Heatsink temperature - Double Side Cooled (Square wave)

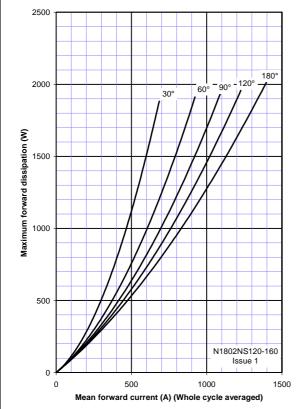
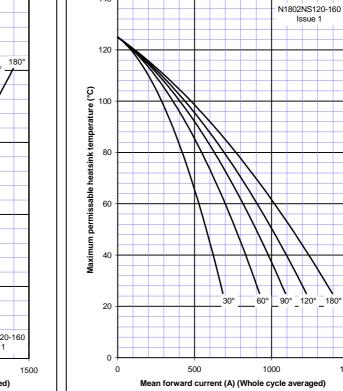
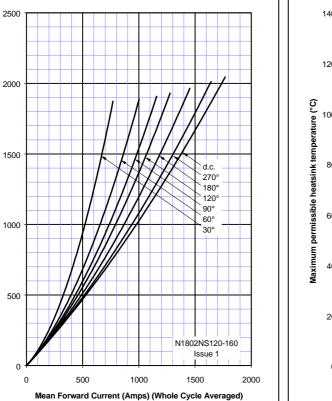



Figure 7 - On-state current vs. Power dissipation -

Single Side Cooled (Square wave)

Maximum forward dissipation (W)


Figure 5 - On-state current vs. Power dissipation - Single Side Cooled (Sine wave)

140

Figure 6 - On-state current vs. Heatsink temperature - Single Side Cooled (Sine wave)

Figure 8 - On-state current vs. Heatsink temperature - Single Side Cooled (Square wave)

140 N1802NS120-160 Issue 1 120 100 80 60 40 30 60° 90° 120° 180° 270° d.c 20 0 0 500 1000 1500 2000 Mean Forward Current (Amps) (Whole Cycle Averaged)

1500

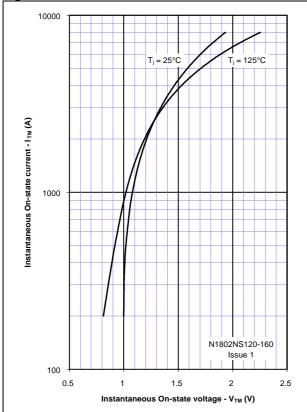
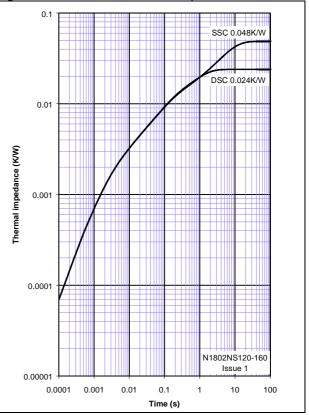
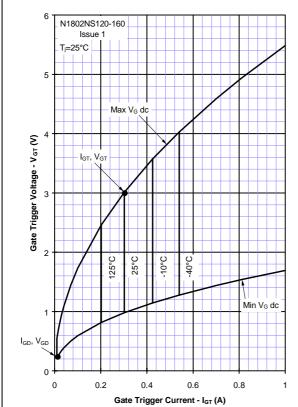
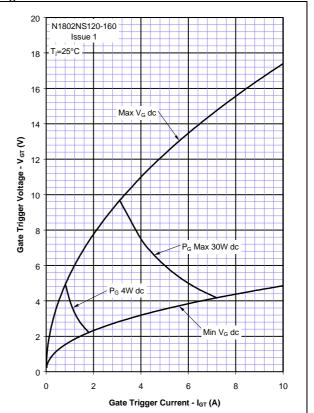
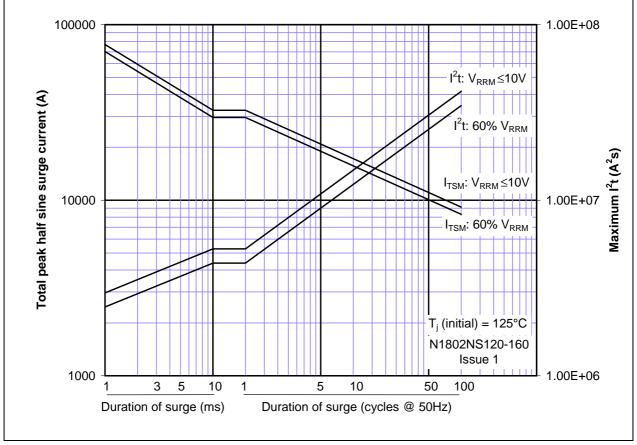
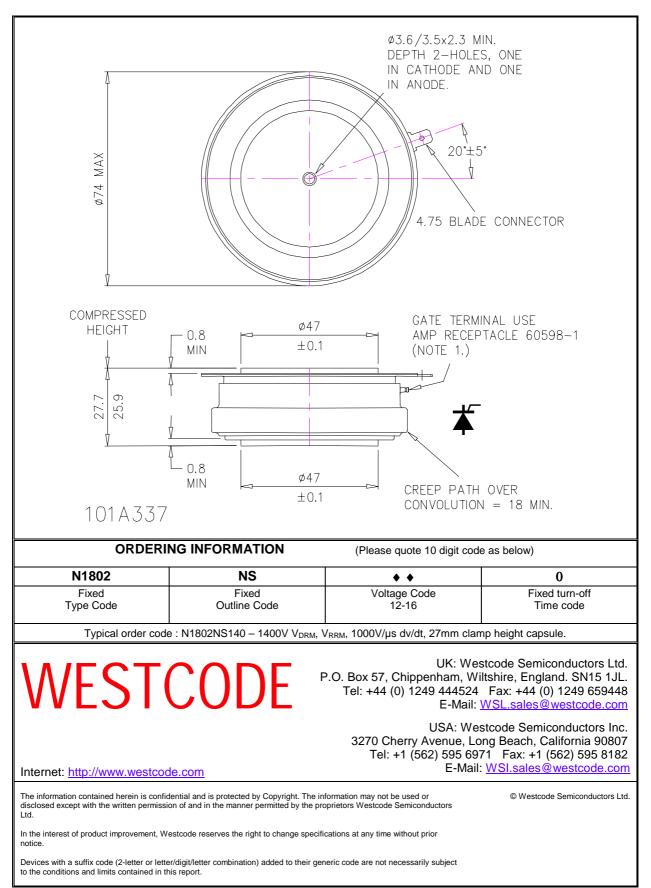



Figure 9 - On-state characteristics of Limit device

Figure 10 - Transient Thermal Impedance


Figure 12 - Gate Characteristics - Power Curves

Outline Drawing & Ordering Information

